

CIE Physics A Level 1 - Physical Quantities and Units

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What are SI units?

What are SI units?

The fundamental (base) units of physical quantities.

What is the SI unit of mass?

What is the SI unit of mass?

Kilogram, kg

What physical quantity is measured in mol?

What physical quantity is measured in mol?

Amount of substance.

What is the SI unit of current?

What is the SI unit of current?

Amperes, A

Is the SI unit for temperature °C or K?

Is the SI unit for temperature °C or K?

K (kelvin) as this is the absolute scale.

What is the SI unit of length?

What is the SI unit of length?

Metre, m

What quantity is measured in seconds?

What quantity is measured in seconds?

Are Newtons (N) an SI unit?

Are Newtons (N) an SI unit?

No, Newtons are not fundamental. The SI units for force are kg m s⁻² (since F = ma).

Derive the SI units of energy.

Derive the SI units of energy.

Kinetic energy = $\frac{1}{2} x$ mass x velocity² Units = kg x (m/s)² = kg m² s⁻²

Derive the SI units of force.

Derive the SI units of force.

Force = mass x acceleration Units = kg x m s⁻² = kg m s⁻²

Express $60T\Omega$ in standard form.

Express $60T\Omega$ in standard form.

6 x 10¹³

(T is tera and the multiplier is 10^{12})

Write 0.000003m with a suitable prefix.

Write 0.000003m with a suitable prefix.

3µm (3 x 10⁻⁶m)

What is the actual value of $8M\Omega$?

What is the actual value of $8M\Omega$?

8,000,000 Ω or 8 x 10⁶ Ω

What is 6000pF in nF?

What is 6000pF in nF?

6nF (since 1 nF = 1000 pF)

What multiplier is associated with the prefix kilo (k)?

What multiplier is associated with the prefix kilo (k)?

x1000 (10³)

Express $7G\Omega$ in standard form.

Express $7G\Omega$ in standard form.

7 x 10⁹ Ω

What is Avogadro's constant a measure of?

What is Avogadro's constant a measure of?

The number of atoms in 0.012kg of carbon-12.

What is a mole a measure of?

What is a mole a measure of?

One mole of a given substance is defined as the amount with a number of particles equal to the Avogadro Constant

What is meant by a scalar quantity?

What is meant by a scalar quantity?

A quantity that has only magnitude.

What is a vector quantity?

What is a vector quantity?

A quantity that has a magnitude as well as a direction.

Is acceleration a vector or scalar quantity?

Is acceleration a vector or scalar quantity?

Vector.

Is mass a scalar or vector quantity?

Is mass a scalar or vector quantity?

Calculate the magnitude of a force F that is 30° to the horizontal and has a horizontal component of 7.0N.

Calculate the magnitude of a force F that is 30° to the horizontal and has a horizontal component of 7.0N.

www.pmt.education

D PMTEducation

Draw the vector addition of the following:

Draw the vector addition of the following:

Draw the vector subtraction of the following:

Draw the vector subtraction of the following

Draw how you would resolve this vector into horizontal and vertical components.

а

Draw how you would resolve this vector into horizontal and vertical components.

